Fiber架构的由来
# Fiber架构的由来
# React理念
React 是用 JavaScript 构建快速响应的大型 Web 应用程序的首选方式。它在 Facebook 和 Instagram 上表现优秀。
可见,关键是实现快速响应。那么制约快速响应的因素是什么呢?
我们日常使用App,浏览网页时,有两类场景会制约快速响应:
- 当遇到大计算量的操作或者设备性能不足使页面掉帧,导致卡顿。
- 发送网络请求后,由于需要等待数据返回才能进一步操作导致不能快速响应。
这两类场景可以概括为:
- CPU的瓶颈
- IO的瓶颈
React是如何解决这两个瓶颈的呢?
# CPU的瓶颈
当项目变得庞大、组件数量繁多时,就容易遇到CPU的瓶颈。
考虑如下Demo,我们向视图中渲染3000个li:
function App() {
const len = 3000;
return (
<ul>
{Array(len).fill(0).map((_, i) => <li>{i}</li>)}
</ul>
);
}
const rootEl = document.querySelector("#root");
ReactDOM.render(<App/>, rootEl);
主流浏览器刷新频率为60Hz,即每(1000ms / 60Hz)16.6ms浏览器刷新一次。
我们知道,JS可以操作DOM,GUI渲染线程与JS线程是互斥的。所以JS脚本执行和浏览器布局、绘制不能同时执行。
在每16.6ms时间内,需要完成如下工作:
JS脚本执行 ----- 样式布局 ----- 样式绘制
当JS执行时间过长,超出了16.6ms,这次刷新就没有时间执行样式布局和样式绘制了。
在Demo中,由于组件数量繁多(3000个),JS脚本执行时间过长,页面掉帧,造成卡顿。
# React15架构的缺点
在Reconciler中,mount的组件会调用mountComponent (opens new window) (opens new window),update的组件会调用updateComponent (opens new window) (opens new window)。这两个方法都会递归更新子组件。
# 递归更新的缺点
由于递归执行,所以更新一旦开始,中途就无法中断。当层级很深时,递归更新时间超过了16ms,用户交互就会卡顿。
在上一节中,我们已经提出了解决办法——用可中断的异步更新代替同步的更新。那么React15的架构支持异步更新么?
# React16架构
React16架构可以分为三层:
- Scheduler(调度器)—— 调度任务的优先级,高优任务优先进入Reconciler
- Reconciler(协调器)—— 负责找出变化的组件
- Renderer(渲染器)—— 负责将变化的组件渲染到页面上
可以看到,相较于React15,React16中新增了Scheduler(调度器),让我们来了解下他。
# Scheduler(调度器)
既然我们以浏览器是否有剩余时间作为任务中断的标准,那么我们需要一种机制,当浏览器有剩余时间时通知我们。
其实部分浏览器已经实现了这个API,这就是requestIdleCallback (opens new window) (opens new window)。但是由于以下因素,React放弃使用:
- 浏览器兼容性
- 触发频率不稳定,受很多因素影响。比如当我们的浏览器切换tab后,之前tab注册的
requestIdleCallback触发的频率会变得很低
基于以上原因,React实现了功能更完备的requestIdleCallbackpolyfill,这就是Scheduler。除了在空闲时触发回调的功能外,Scheduler还提供了多种调度优先级供任务设置。
# Reconciler(协调器)
我们知道,在React15中Reconciler是递归处理虚拟DOM的。让我们看看React16的Reconciler (opens new window) (opens new window)。
我们可以看见,更新工作从递归变成了可以中断的循环过程。每次循环都会调用shouldYield判断当前是否有剩余时间。
在React16架构中整个更新流程为:

其中红框中的步骤随时可能由于以下原因被中断:
- 有其他更高优任务需要先更新
- 当前帧没有剩余时间
由于红框中的工作都在内存中进行,不会更新页面上的DOM,所以即使反复中断,用户也不会看见更新不完全的DOM(即上一节演示的情况)。
实际上,由于Scheduler和Reconciler都是平台无关的,所以
React为他们单独发了一个包react-Reconciler (opens new window) (opens new window)。你可以用这个包自己实现一个ReactDOM,具体见参考资料
# 总结
通过本节我们知道了React16采用新的Reconciler。
Reconciler内部采用了Fiber的架构。
# 代数效应与Generator
从React15到React16,协调器(Reconciler)重构的一大目的是:将老的同步更新的架构变为异步可中断更新。
异步可中断更新可以理解为:更新在执行过程中可能会被打断(浏览器时间分片用尽或有更高优任务插队),当可以继续执行时恢复之前执行的中间状态。
这就是代数效应中try...handle的作用。
其实,浏览器原生就支持类似的实现,这就是Generator。
但是Generator的一些缺陷使React团队放弃了他:
- 类似
async,Generator也是传染性的,使用了Generator则上下文的其他函数也需要作出改变。这样心智负担比较重。 Generator执行的中间状态是上下文关联的。
考虑如下例子:
function* doWork(A, B, C) {
var x = doExpensiveWorkA(A);
yield;
var y = x + doExpensiveWorkB(B);
yield;
var z = y + doExpensiveWorkC(C);
return z;
}
每当浏览器有空闲时间都会依次执行其中一个doExpensiveWork,当时间用尽则会中断,当再次恢复时会从中断位置继续执行。
只考虑“单一优先级任务的中断与继续”情况下Generator可以很好的实现异步可中断更新。
但是当我们考虑“高优先级任务插队”的情况,如果此时已经完成doExpensiveWorkA与doExpensiveWorkB计算出x与y。
此时B组件接收到一个高优更新,由于Generator执行的中间状态是上下文关联的,所以计算y时无法复用之前已经计算出的x,需要重新计算。
如果通过全局变量保存之前执行的中间状态,又会引入新的复杂度。
基于这些原因,React没有采用Generator实现协调器。
# 代数效应与Fiber
Fiber并不是计算机术语中的新名词,他的中文翻译叫做纤程,与进程(Process)、线程(Thread)、协程(Coroutine)同为程序执行过程。
在很多文章中将纤程理解为协程的一种实现。在JS中,协程的实现便是Generator。
所以,我们可以将纤程(Fiber)、协程(Generator)理解为代数效应思想在JS中的体现。
React Fiber可以理解为:
React内部实现的一套状态更新机制。支持任务不同优先级,可中断与恢复,并且恢复后可以复用之前的中间状态。
其中每个任务更新单元为React Element对应的Fiber节点。
在React15及以前,Reconciler采用递归的方式创建虚拟DOM,递归过程是不能中断的。如果组件树的层级很深,递归会占用线程很多时间,造成卡顿。
为了解决这个问题,React16将递归的无法中断的更新重构为异步的可中断更新,由于曾经用于递归的虚拟DOM数据结构已经无法满足需要。于是,全新的Fiber架构应运而生。
# Fiber的含义
Fiber包含三层含义:
- 作为架构来说,之前
React15的Reconciler采用递归的方式执行,数据保存在递归调用栈中,所以被称为stack Reconciler。React16的Reconciler基于Fiber节点实现,被称为Fiber Reconciler。 - 作为静态的数据结构来说,每个
Fiber节点对应一个React element,保存了该组件的类型(函数组件/类组件/原生组件...)、对应的DOM节点等信息。 - 作为动态的工作单元来说,每个
Fiber节点保存了本次更新中该组件改变的状态、要执行的工作(需要被删除/被插入页面中/被更新...)。
# Fiber的结构
你可以从这里看到Fiber节点的属性定义 (opens new window) (opens new window)。虽然属性很多,但我们可以按三层含义将他们分类来看
function FiberNode(
tag: WorkTag,
pendingProps: mixed,
key: null | string,
mode: TypeOfMode,
) {
// 作为静态数据结构的属性
this.tag = tag;
this.key = key;
this.elementType = null;
this.type = null;
this.stateNode = null;
// 用于连接其他Fiber节点形成Fiber树
this.return = null;
this.child = null;
this.sibling = null;
this.index = 0;
this.ref = null;
// 作为动态的工作单元的属性
this.pendingProps = pendingProps;
this.memoizedProps = null;
this.updateQueue = null;
this.memoizedState = null;
this.dependencies = null;
this.mode = mode;
this.effectTag = NoEffect;
this.nextEffect = null;
this.firstEffect = null;
this.lastEffect = null;
// 调度优先级相关
this.lanes = NoLanes;
this.childLanes = NoLanes;
// 指向该fiber在另一次更新时对应的fiber
this.alternate = null;
}
# 作为架构来说
每个Fiber节点有个对应的React element,多个Fiber节点是如何连接形成树呢?靠如下三个属性:
// 指向父级Fiber节点
this.return = null;
// 指向子Fiber节点
this.child = null;
// 指向右边第一个兄弟Fiber节点
this.sibling = null;
# Fiber架构的工作原理
通过上一节的学习,我们了解了Fiber是什么,知道Fiber节点可以保存对应的DOM节点。
相应的,Fiber节点构成的Fiber树就对应DOM树。
那么如何更新DOM呢?这需要用到被称为“双缓存”的技术。
# 什么是“双缓存”
当我们用canvas绘制动画,每一帧绘制前都会调用ctx.clearRect清除上一帧的画面。
如果当前帧画面计算量比较大,导致清除上一帧画面到绘制当前帧画面之间有较长间隙,就会出现白屏。
为了解决这个问题,我们可以在内存中绘制当前帧动画,绘制完毕后直接用当前帧替换上一帧画面,由于省去了两帧替换间的计算时间,不会出现从白屏到出现画面的闪烁情况。
这种在内存中构建并直接替换的技术叫做双缓存 (opens new window) (opens new window)。
React使用“双缓存”来完成Fiber树的构建与替换——对应着DOM树的创建与更新。
# 双缓存Fiber树
在React中最多会同时存在两棵Fiber树。当前屏幕上显示内容对应的Fiber树称为current Fiber树,正在内存中构建的Fiber树称为workInProgress Fiber树。
current Fiber树中的Fiber节点被称为current fiber,workInProgress Fiber树中的Fiber节点被称为workInProgress fiber,他们通过alternate属性连接。
currentFiber.alternate === workInProgressFiber;
workInProgressFiber.alternate === currentFiber;
React应用的根节点通过使current指针在不同Fiber树的rootFiber间切换来完成current Fiber树指向的切换。
即当workInProgress Fiber树构建完成交给Renderer渲染在页面上后,应用根节点的current指针指向workInProgress Fiber树,此时workInProgress Fiber树就变为current Fiber树。
每次状态更新都会产生新的workInProgress Fiber树,通过current与workInProgress的替换,完成DOM更新。
接下来我们以具体例子讲解mount时、update时的构建/替换流程。
# mount时
考虑如下例子:
function App() {
const [num, add] = useState(0);
return (
<p onClick={() => add(num + 1)}>{num}</p>
)
}
ReactDOM.render(<App/>, document.getElementById('root'));
- 首次执行
ReactDOM.render会创建fiberRootNode(源码中叫fiberRoot)和rootFiber。其中fiberRootNode是整个应用的根节点,rootFiber是<App/>所在组件树的根节点。
之所以要区分fiberRootNode与rootFiber,是因为在应用中我们可以多次调用ReactDOM.render渲染不同的组件树,他们会拥有不同的rootFiber。但是整个应用的根节点只有一个,那就是fiberRootNode。
fiberRootNode的current会指向当前页面上已渲染内容对应Fiber树,即current Fiber树。

fiberRootNode.current = rootFiber;
由于是首屏渲染,页面中还没有挂载任何DOM,所以fiberRootNode.current指向的rootFiber没有任何子Fiber节点(即current Fiber树为空)。
- 接下来进入
render阶段,根据组件返回的JSX在内存中依次创建Fiber节点并连接在一起构建Fiber树,被称为workInProgress Fiber树。(下图中右侧为内存中构建的树,左侧为页面显示的树)
在构建workInProgress Fiber树时会尝试复用current Fiber树中已有的Fiber节点内的属性,在首屏渲染时只有rootFiber存在对应的current fiber(即rootFiber.alternate)。

- 图中右侧已构建完的
workInProgress Fiber树在commit阶段渲染到页面。
此时DOM更新为右侧树对应的样子。fiberRootNode的current指针指向workInProgress Fiber树使其变为current Fiber 树。

# update时
- 接下来我们点击
p节点触发状态改变,这会开启一次新的render阶段并构建一棵新的workInProgress Fiber 树。

和mount时一样,workInProgress fiber的创建可以复用current Fiber树对应的节点数据。
这个决定是否复用的过程就是Diff算法,后面章节会详细讲解
workInProgress Fiber 树在render阶段完成构建后进入commit阶段渲染到页面上。渲染完毕后,workInProgress Fiber 树变为current Fiber 树。

# 总结
本文介绍了Fiber树的构建与替换过程,这个过程伴随着DOM的更新。
那么在构建过程中每个Fiber节点具体是如何创建的呢?我们会在架构篇的render阶段讲解。
通过本章的学习,我们了解了React的Scheduler-Reconciler-Renderer架构体系,在结束本章前,我想介绍几个源码内的术语:
Reconciler工作的阶段被称为render阶段。因为在该阶段会调用组件的render方法。Renderer工作的阶段被称为commit阶段。就像你完成一个需求的编码后执行git commit提交代码。commit阶段会把render阶段提交的信息渲染在页面上。render与commit阶段统称为work,即React在工作中。相对应的,如果任务正在Scheduler内调度,就不属于work。
在架构篇我们会分别讲解Reconciler和Renderer的工作流程,所以章节名分别为render阶段和commit阶段。