HTTP 1
# HTTP 1
在了解 HTTP 1.0 之前,我们先来了解下 HTTP 0.9.
# HTTP 0.9
TTP/0.9 是于 1991 年提出的,主要用于学术交流,需求很简单——用来在网络之间传递 HTML 超文本的内容,所以被称为超文本传输协议。
- HTTP 都是基于 TCP 协议的,客户端先要根据 IP 地址、端口和服务器建立 TCP 连接,而建立连接的过程就是 TCP 协议三次握手的过程。
- 建立好连接之后,会发送一个 GET 请求行的信息,如GET /index.html用来获取 index.html。
- 服务器接收请求信息之后,读取对应的 HTML 文件,并将数据以 ASCII 字符流返回给客户端。
- HTML 文档传输完成后,断开连接。
由于当时的需求十分的小,所以他就有了以下三个特点:
- 只有一个请求行,并没有 HTTP 请求头和请求体,因为只需要一个请求行就可以完整表达客户端的需求了。
- 服务器也没有返回头信息,这是因为服务器端并不需要告诉客户端太多信息,只需要返回数据就可以了。
- 返回的文件内容是以 ASCII 字符流来传输的,因为都是 HTML 格式的文件,所以使用 ASCII 字节码来传输是最合适的。
为什么 HTTP0.9 会被淘汰呢,原因在于支持多种类型的文件下载。
# HTTP1.0
那么该如何实现多种类型文件的下载呢?
很明显简单的GET无法满足需求,为了让客户端和服务器能更深入地交流,HTTP/1.0 引入了请求头和响应头,它们都是以为 Key-Value 形式保存的,在 HTTP 发送请求时,会带上请求头信息,服务器返回数据时,会先返回响应头信息。
HTTP/1.0 是怎么通过请求头和响应头来支持多种不同类型的数据呢?
有几个问题需要解决:
- 浏览器需要知道数据是什么类型, 然后浏览器才能根据不同的数据类型做针对性的处理。
- 由于万维网所支持的应用变得越来越广,所以单个文件的数据量也变得越来越大。为了减轻传输性能,服务器会对数据进行压缩后再传输,所以浏览器需要知道服务器压缩的方法。
- 由于万维网是支持全球范围的,所以需要提供国际化的支持,服务器需要对不同的地区提供不同的语言版本,这就需要浏览器告诉服务器它想要什么语言版本的页面。
- 由于增加了各种不同类型的文件,而每种文件的编码形式又可能不一样,为了能够准确地读取文件,浏览器需要知道文件的编码类型。
HTTP/1.0 的方案是通过请求头和响应头来进行协商,在发起请求时候会通过 HTTP 请求头告诉服务器它期待服务器返回什么类型的文件、采取什么形式的压缩、提供什么语言的文件以及文件的具体编码。
举例如下:
accept: text/html // 返回 html 类型
accept-encoding: gzip, deflate, br // 期望服务器可以采用 gzip、deflate 或者 br 其中的一种压缩方式
accept-Charset: utf-8 // 期望返回的文件编码是 UTF-8
accept-language: zh-CN,zh // 期望页面的优先语言是中文
服务器接收到浏览器发送过来的请求头信息之后,会根据请求头的信息来准备响应数据。不过有时候会有一些意外情况发生,比如浏览器请求的压缩类型是 gzip,但是服务器不支持 gzip,只支持 br 压缩,那么它会通过响应头中的 content-encoding 字段告诉浏览器最终的压缩类型,也就是说最终浏览器需要根据响应头的信息来处理数据。
content-encoding: br // 服务器采用了 br 的压缩方法
content-type: text/html; charset=UTF-8 // 服务器返回的是 html 文件,并且该文件的编码类型是 UTF-8。
有了响应头的信息,浏览器就会使用 br 方法来解压文件,再按照 UTF-8 的编码格式来处理原始文件,最后按照 HTML 的方式来解析该文件。
其实 HTTP1.0 除了解决上述问题,还引入了许多特性:
- 有的请求服务器可能无法处理,或者处理出错,这时候就需要告诉浏览器服务器最终处理该请求的情况,这就引入了状态码。状态码是通过响应行的方式来通知浏览器的。
- 为了减轻服务器的压力,在 HTTP/1.0 中提供了 Cache 机制,用来缓存已经下载过的数据。
- 服务器需要统计客户端的基础信息,比如 Windows 和 macOS 的用户数量分别是多少,所以 HTTP/1.0 的请求头中还加入了用户代理的字段。
# HTTP 1.1
那么 HTTP 1.1 做了那些改进呢?
# 持久连接
HTTP/1.0 每进行一次 HTTP 通信,都需要经历建立 TCP 连接、传输 HTTP 数据和断开 TCP 连接三个阶段。
当时由于通信的文件比较小,而且每个页面的引用也不多,所以这种传输形式没什么大问题。
而现在一个页面可能包含了几百个外部引用的资源文件,如果在下载每个文件的时候,都需要经历建立 TCP 连接、传输数据和断开连接这样的步骤,无疑会增加大量无谓的开销。
HTTP/1.1 中增加了持久连接的方法,它的特点是在一个 TCP 连接上可以传输多个 HTTP 请求,只要浏览器或者服务器没有明确断开连接,那么该 TCP 连接会一直保持。
可以看出,HTTP 的持久连接可以有效减少 TCP 建立连接和断开连接的次数,这样的好处是减少了服务器额外的负担,并提升整体 HTTP 的请求时长。目前浏览器中对于同一个域名,默认允许同时建立 6 个 TCP 持久连接。
# 不成熟的 HTTP 管线化
持久连接虽然能减少 TCP 的建立和断开次数,但是它需要等待前面的请求返回之后,才能进行下一次请求。如果 TCP 通道中的某个请求因为某些原因没有及时返回,那么就会阻塞后面的所有请求,这就是著名的队头阻塞的问题。
HTTP/1.1 中试图通过管线化的技术来解决队头阻塞的问题。HTTP/1.1 中的管线化是指将多个 HTTP 请求整批提交给服务器的技术,虽然可以整批发送请求,不过服务器依然需要根据请求顺序来回复浏览器的请求。
# 提供虚拟主机的支持
在 HTTP/1.0 中,每个域名绑定了一个唯一的 IP 地址,因此一个服务器只能支持一个域名。但是随着虚拟主机技术的发展,需要实现在一台物理主机上绑定多个虚拟主机,每个虚拟主机都有自己的单独的域名,这些单独的域名都公用同一个 IP 地址。
HTTP/1.1 的请求头中增加了 Host 字段,用来表示当前的域名地址,这样服务器就可以根据不同的 Host 值做不同的处理。
# 对动态生成的内容提供了完美支持
在 HTTP/1.0 ,需要在响应头中设置完整的数据大小,如Content-Length: 901,这样浏览器就可以根据设置的数据大小来接收数据。不过随着服务器端的技术发展,很多页面的内容都是动态生成的,因此在传输数据之前并不知道最终的数据大小,这就导致了浏览器不知道何时会接收完所有的文件数据。
HTTP/1.1 通过引入 Chunk transfer 机制来解决这个问题,服务器会将数据分割成若干个任意大小的数据块,每个数据块发送时会附上上个数据块的长度,最后使用一个零长度的块作为发送数据完成的标志。这样就提供了对动态内容的支持。
# 客户端 Cookie、安全机制
HTTP/1.1 还引入了客户端 Cookie 机制和安全机制。